Artificial General Intelligence

Comentários · 40 Visualizações

Artificial general intelligence (AGI) is a kind of artificial intelligence (AI) that matches or surpasses human cognitive capabilities throughout a wide variety of cognitive tasks.

Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or exceeds human cognitive capabilities across a vast array of cognitive tasks. This contrasts with narrow AI, which is limited to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly surpasses human cognitive capabilities. AGI is considered one of the meanings of strong AI.


Creating AGI is a main objective of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research study and development projects throughout 37 nations. [4]

The timeline for accomplishing AGI stays a topic of ongoing debate amongst scientists and specialists. As of 2023, some argue that it might be possible in years or decades; others preserve it may take a century or longer; a minority think it may never ever be accomplished; and another minority claims that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed issues about the fast progress towards AGI, tandme.co.uk suggesting it might be attained sooner than lots of expect. [7]

There is debate on the precise definition of AGI and regarding whether modern large language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common subject in sci-fi and futures studies. [9] [10]

Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many professionals on AI have actually specified that reducing the danger of human termination postured by AGI must be an international priority. [14] [15] Others find the advancement of AGI to be too remote to present such a risk. [16] [17]

Terminology


AGI is likewise called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or general smart action. [21]

Some academic sources schedule the term "strong AI" for computer programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to resolve one particular problem however lacks basic cognitive capabilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the very same sense as humans. [a]

Related principles consist of synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical kind of AGI that is much more normally intelligent than humans, [23] while the concept of transformative AI associates with AI having a large impact on society, for instance, comparable to the farming or industrial revolution. [24]

A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify 5 levels of AGI: emerging, competent, professional, virtuoso, and superhuman. For instance, a proficient AGI is defined as an AI that exceeds 50% of skilled grownups in a wide variety of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified but with a limit of 100%. They think about large language models like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]

Characteristics


Various popular definitions of intelligence have actually been proposed. Among the leading proposals is the Turing test. However, there are other popular definitions, and some scientists disagree with the more popular approaches. [b]

Intelligence characteristics


Researchers generally hold that intelligence is required to do all of the following: [27]

reason, usage method, resolve puzzles, and make judgments under uncertainty
represent knowledge, consisting of good sense understanding
strategy
learn
- communicate in natural language
- if essential, incorporate these skills in completion of any given objective


Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and decision making) think about extra qualities such as creativity (the capability to form unique mental images and ideas) [28] and autonomy. [29]

Computer-based systems that show much of these capabilities exist (e.g. see computational imagination, automated thinking, photorum.eclat-mauve.fr choice support group, robotic, evolutionary calculation, intelligent agent). There is debate about whether modern-day AI systems have them to an adequate degree.


Physical characteristics


Other abilities are thought about desirable in smart systems, as they might impact intelligence or help in its expression. These include: [30]

- the capability to sense (e.g. see, hear, and so on), and
- the capability to act (e.g. relocation and manipulate things, change location to explore, etc).


This includes the ability to identify and react to threat. [31]

Although the capability to sense (e.g. see, hear, etc) and the capability to act (e.g. move and manipulate objects, modification place to explore, and so on) can be preferable for some intelligent systems, [30] these physical abilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language models (LLMs) might currently be or end up being AGI. Even from a less positive perspective on LLMs, there is no firm requirement for an AGI to have a human-like form; being a silicon-based computational system suffices, provided it can process input (language) from the external world in location of human senses. This interpretation lines up with the understanding that AGI has actually never ever been proscribed a particular physical embodiment and hence does not demand a capability for mobility or standard "eyes and ears". [32]

Tests for human-level AGI


Several tests indicated to verify human-level AGI have been thought about, including: [33] [34]

The idea of the test is that the machine needs to attempt and pretend to be a male, by addressing concerns put to it, and it will only pass if the pretence is fairly persuading. A substantial part of a jury, who ought to not be professional about makers, should be taken in by the pretence. [37]

AI-complete problems


A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would need to execute AGI, because the service is beyond the capabilities of a purpose-specific algorithm. [47]

There are lots of problems that have actually been conjectured to need general intelligence to solve along with people. Examples include computer vision, natural language understanding, and handling unforeseen circumstances while fixing any real-world issue. [48] Even a particular task like translation needs a machine to read and compose in both languages, follow the author's argument (factor), comprehend the context (understanding), and faithfully replicate the author's initial intent (social intelligence). All of these problems need to be resolved all at once in order to reach human-level device efficiency.


However, a number of these jobs can now be performed by contemporary large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on many standards for checking out comprehension and visual thinking. [49]

History


Classical AI


Modern AI research began in the mid-1950s. [50] The first generation of AI researchers were encouraged that artificial basic intelligence was possible which it would exist in simply a few decades. [51] AI leader Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]

Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could create by the year 2001. AI leader Marvin Minsky was a consultant [53] on the job of making HAL 9000 as sensible as possible according to the consensus forecasts of the time. He said in 1967, "Within a generation ... the problem of creating 'artificial intelligence' will considerably be resolved". [54]

Several classical AI projects, such as Doug Lenat's Cyc task (that began in 1984), and wiki.woge.or.at Allen Newell's Soar project, were directed at AGI.


However, in the early 1970s, it ended up being apparent that researchers had actually grossly undervalued the difficulty of the project. Funding agencies became skeptical of AGI and put researchers under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI goals like "bring on a table talk". [58] In response to this and the success of professional systems, both industry and government pumped money into the field. [56] [59] However, confidence in AI stunningly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For the 2nd time in twenty years, AI researchers who predicted the imminent accomplishment of AGI had actually been mistaken. By the 1990s, AI scientists had a track record for making vain promises. They ended up being hesitant to make predictions at all [d] and avoided reference of "human level" expert system for fear of being labeled "wild-eyed dreamer [s]. [62]

Narrow AI research study


In the 1990s and early 21st century, mainstream AI attained commercial success and academic respectability by concentrating on particular sub-problems where AI can produce verifiable results and industrial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now utilized extensively throughout the innovation industry, and research in this vein is heavily funded in both academic community and market. Since 2018 [upgrade], development in this field was considered an emerging trend, and a mature stage was expected to be reached in more than 10 years. [64]

At the millenium, many traditional AI scientists [65] hoped that strong AI might be developed by combining programs that resolve numerous sub-problems. Hans Moravec wrote in 1988:


I am confident that this bottom-up route to synthetic intelligence will one day meet the standard top-down path more than half method, ready to supply the real-world competence and the commonsense understanding that has actually been so frustratingly elusive in reasoning programs. Fully smart makers will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]

However, even at the time, this was challenged. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by specifying:


The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow meet "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper are legitimate, then this expectation is hopelessly modular and there is really just one feasible path from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we need to even attempt to reach such a level, given that it looks as if arriving would simply total up to uprooting our symbols from their intrinsic significances (thus simply minimizing ourselves to the functional equivalent of a programmable computer). [66]

Modern artificial basic intelligence research


The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the ability to satisfy objectives in a wide variety of environments". [68] This kind of AGI, defined by the ability to increase a mathematical definition of intelligence rather than display human-like behaviour, [69] was likewise called universal expert system. [70]

The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The first summer school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of guest speakers.


Since 2023 [upgrade], a little number of computer researchers are active in AGI research, and many contribute to a series of AGI conferences. However, increasingly more researchers are interested in open-ended knowing, [76] [77] which is the concept of enabling AI to constantly discover and innovate like humans do.


Feasibility


As of 2023, the development and potential accomplishment of AGI stays a subject of intense argument within the AI community. While standard consensus held that AGI was a distant goal, recent advancements have actually led some researchers and market figures to claim that early kinds of AGI may currently exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a male can do". This prediction failed to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century due to the fact that it would need "unforeseeable and basically unpredictable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern-day computing and human-level expert system is as wide as the gulf in between current area flight and useful faster-than-light spaceflight. [80]

A more difficulty is the absence of clarity in defining what intelligence involves. Does it need awareness? Must it show the capability to set objectives as well as pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding needed? Does intelligence require clearly reproducing the brain and its specific faculties? Does it require feelings? [81]

Most AI scientists think strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of achieving strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be accomplished, but that today level of development is such that a date can not precisely be forecasted. [84] AI professionals' views on the feasibility of AGI wax and subside. Four surveys carried out in 2012 and 2013 recommended that the median quote amongst specialists for when they would be 50% positive AGI would arrive was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% answered with "never" when asked the same question however with a 90% confidence rather. [85] [86] Further current AGI development factors to consider can be discovered above Tests for confirming human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year timespan there is a strong bias towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They analyzed 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]

In 2023, Microsoft scientists published an in-depth assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it might reasonably be viewed as an early (yet still incomplete) version of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of people on the Torrance tests of creativity. [89] [90]

Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a considerable level of basic intelligence has actually currently been achieved with frontier designs. They composed that hesitation to this view comes from four primary factors: a "healthy skepticism about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "dedication to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]

2023 likewise marked the emergence of big multimodal designs (big language designs capable of processing or generating multiple modalities such as text, audio, and images). [92]

In 2024, OpenAI released o1-preview, the first of a series of models that "invest more time thinking before they respond". According to Mira Murati, this ability to think before reacting represents a new, extra paradigm. It improves model outputs by investing more computing power when generating the response, whereas the design scaling paradigm enhances outputs by increasing the design size, training information and training compute power. [93] [94]

An OpenAI employee, Vahid Kazemi, claimed in 2024 that the business had accomplished AGI, mentioning, "In my viewpoint, we have already achieved AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than many human beings at the majority of jobs." He also addressed criticisms that big language designs (LLMs) merely follow predefined patterns, comparing their learning process to the clinical technique of observing, assuming, and confirming. These declarations have sparked argument, as they rely on a broad and unconventional meaning of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs demonstrate remarkable versatility, they might not completely meet this requirement. Notably, Kazemi's comments came soon after OpenAI got rid of "AGI" from the terms of its partnership with Microsoft, prompting speculation about the business's strategic intents. [95]

Timescales


Progress in expert system has historically gone through durations of rapid progress separated by durations when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to create space for further development. [82] [98] [99] For instance, the hardware available in the twentieth century was not enough to execute deep knowing, which needs large numbers of GPU-enabled CPUs. [100]

In the introduction to his 2006 book, [101] Goertzel states that price quotes of the time needed before a really flexible AGI is developed differ from 10 years to over a century. Since 2007 [upgrade], the consensus in the AGI research community seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI scientists have actually offered a large range of opinions on whether development will be this quick. A 2012 meta-analysis of 95 such viewpoints discovered a predisposition towards anticipating that the beginning of AGI would occur within 16-26 years for modern and historic predictions alike. That paper has actually been slammed for how it classified opinions as professional or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the conventional method used a weighted sum of scores from different pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the present deep knowing wave. [105]

In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on openly readily available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old kid in very first grade. An adult comes to about 100 on average. Similar tests were performed in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language model capable of performing numerous diverse jobs without specific training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]

In the exact same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to adhere to their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 various tasks. [110]

In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, contending that it showed more general intelligence than previous AI designs and showed human-level performance in jobs spanning multiple domains, such as mathematics, coding, and law. This research triggered a debate on whether GPT-4 might be thought about an early, incomplete version of synthetic general intelligence, emphasizing the requirement for more exploration and assessment of such systems. [111]

In 2023, the AI scientist Geoffrey Hinton specified that: [112]

The idea that this stuff could in fact get smarter than people - a couple of individuals believed that, [...] But the majority of people thought it was method off. And I thought it was way off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer think that.


In May 2023, Demis Hassabis likewise stated that "The development in the last few years has actually been pretty amazing", which he sees no factor why it would decrease, expecting AGI within a decade or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within five years, AI would can passing any test at least along with human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI staff member, estimated AGI by 2027 to be "strikingly possible". [115]

Whole brain emulation


While the development of transformer models like in ChatGPT is considered the most promising path to AGI, [116] [117] entire brain emulation can act as an alternative technique. With whole brain simulation, a brain model is constructed by scanning and mapping a biological brain in information, and after that copying and mimicing it on a computer system or another computational gadget. The simulation design need to be adequately faithful to the original, so that it behaves in almost the same method as the original brain. [118] Whole brain emulation is a type of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research study functions. It has actually been talked about in synthetic intelligence research study [103] as a technique to strong AI. Neuroimaging technologies that might provide the essential comprehensive understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will appear on a comparable timescale to the computing power required to emulate it.


Early estimates


For low-level brain simulation, an extremely effective cluster of computer systems or GPUs would be needed, offered the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by adulthood. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on a simple switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil looked at various price quotes for the hardware required to equal the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a procedure utilized to rate existing supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was attained in 2022.) He utilized this figure to predict the essential hardware would be offered sometime in between 2015 and 2025, if the rapid growth in computer system power at the time of writing continued.


Current research


The Human Brain Project, an EU-funded effort active from 2013 to 2023, has developed an especially comprehensive and openly available atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.


Criticisms of simulation-based methods


The synthetic nerve cell design presumed by Kurzweil and used in many present artificial neural network applications is basic compared with biological neurons. A brain simulation would likely have to record the comprehensive cellular behaviour of biological neurons, currently understood just in broad outline. The overhead introduced by full modeling of the biological, chemical, and physical details of neural behaviour (especially on a molecular scale) would need computational powers several orders of magnitude larger than Kurzweil's price quote. In addition, the quotes do not represent glial cells, which are known to contribute in cognitive processes. [125]

A basic criticism of the simulated brain method stems from embodied cognition theory which asserts that human personification is an essential aspect of human intelligence and is required to ground meaning. [126] [127] If this theory is appropriate, any fully practical brain model will need to include more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, however it is unidentified whether this would suffice.


Philosophical point of view


"Strong AI" as specified in viewpoint


In 1980, theorist John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between 2 hypotheses about expert system: [f]

Strong AI hypothesis: An artificial intelligence system can have "a mind" and "awareness".
Weak AI hypothesis: An expert system system can (only) imitate it thinks and has a mind and consciousness.


The first one he called "strong" since it makes a more powerful declaration: it assumes something unique has taken place to the device that goes beyond those abilities that we can check. The behaviour of a "weak AI" device would be specifically identical to a "strong AI" device, however the latter would likewise have subjective mindful experience. This use is likewise typical in academic AI research and books. [129]

In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to indicate "human level synthetic general intelligence". [102] This is not the same as Searle's strong AI, unless it is presumed that awareness is essential for human-level AGI. Academic philosophers such as Searle do not think that is the case, and to most artificial intelligence scientists the concern is out-of-scope. [130]

Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to understand if it really has mind - certainly, there would be no other way to inform. For AI research study, Searle's "weak AI hypothesis" is comparable to the declaration "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are two different things.


Consciousness


Consciousness can have numerous meanings, and some aspects play significant functions in sci-fi and the principles of expert system:


Sentience (or "extraordinary consciousness"): The capability to "feel" understandings or emotions subjectively, rather than the capability to factor about understandings. Some philosophers, such as David Chalmers, use the term "awareness" to refer exclusively to sensational awareness, which is approximately comparable to sentience. [132] Determining why and how subjective experience occurs is understood as the hard issue of consciousness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be conscious. If we are not mindful, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had actually attained sentience, though this claim was widely disputed by other experts. [135]

Self-awareness: To have mindful awareness of oneself as a different person, particularly to be knowingly mindful of one's own ideas. This is opposed to simply being the "topic of one's believed"-an os or debugger has the ability to be "familiar with itself" (that is, to represent itself in the very same way it represents whatever else)-however this is not what individuals normally imply when they utilize the term "self-awareness". [g]

These qualities have an ethical measurement. AI life would trigger issues of welfare and legal defense, similarly to animals. [136] Other elements of awareness associated to cognitive capabilities are likewise pertinent to the concept of AI rights. [137] Figuring out how to incorporate advanced AI with existing legal and social structures is an emerging concern. [138]

Benefits


AGI might have a large variety of applications. If oriented towards such goals, AGI could help alleviate numerous problems worldwide such as cravings, poverty and health issue. [139]

AGI might enhance productivity and performance in many tasks. For example, in public health, AGI might speed up medical research, significantly against cancer. [140] It might look after the elderly, [141] and equalize access to quick, top quality medical diagnostics. It could use enjoyable, inexpensive and customized education. [141] The requirement to work to subsist could become outdated if the wealth produced is properly rearranged. [141] [142] This likewise raises the question of the location of human beings in a drastically automated society.


AGI might likewise assist to make reasonable choices, and to expect and prevent disasters. It could likewise help to profit of possibly catastrophic technologies such as nanotechnology or environment engineering, while avoiding the associated risks. [143] If an AGI's primary objective is to prevent existential catastrophes such as human termination (which could be difficult if the Vulnerable World Hypothesis ends up being real), [144] it could take steps to dramatically reduce the risks [143] while minimizing the effect of these procedures on our lifestyle.


Risks


Existential risks


AGI may represent numerous kinds of existential risk, which are threats that threaten "the early extinction of Earth-originating smart life or the permanent and extreme damage of its capacity for desirable future development". [145] The danger of human extinction from AGI has been the topic of many arguments, however there is also the possibility that the advancement of AGI would result in a completely problematic future. Notably, it might be used to spread and preserve the set of worths of whoever develops it. If humanity still has ethical blind spots comparable to slavery in the past, AGI might irreversibly entrench it, avoiding ethical development. [146] Furthermore, AGI could assist in mass monitoring and brainwashing, which might be utilized to produce a stable repressive around the world totalitarian program. [147] [148] There is likewise a danger for the machines themselves. If devices that are sentient or otherwise deserving of moral factor to consider are mass developed in the future, engaging in a civilizational path that indefinitely ignores their welfare and interests could be an existential catastrophe. [149] [150] Considering just how much AGI could improve humanity's future and aid minimize other existential risks, Toby Ord calls these existential threats "an argument for continuing with due caution", not for "abandoning AI". [147]

Risk of loss of control and human extinction


The thesis that AI positions an existential risk for human beings, which this threat needs more attention, is questionable however has been endorsed in 2023 by many public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking slammed prevalent indifference:


So, dealing with possible futures of enormous advantages and dangers, the professionals are surely doing everything possible to make sure the very best result, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll show up in a couple of decades,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is happening with AI. [153]

The potential fate of mankind has in some cases been compared to the fate of gorillas threatened by human activities. The contrast mentions that higher intelligence permitted humankind to control gorillas, which are now susceptible in ways that they could not have actually expected. As a result, the gorilla has actually become an endangered types, not out of malice, but merely as a civilian casualties from human activities. [154]

The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate humanity and that we ought to be careful not to anthropomorphize them and analyze their intents as we would for humans. He said that people will not be "wise enough to create super-intelligent machines, yet ridiculously dumb to the point of giving it moronic goals with no safeguards". [155] On the other side, the concept of important convergence recommends that almost whatever their objectives, smart agents will have factors to attempt to survive and get more power as intermediary actions to attaining these objectives. And that this does not need having emotions. [156]

Many scholars who are worried about existential risk advocate for more research study into solving the "control issue" to address the concern: what kinds of safeguards, algorithms, or architectures can developers carry out to maximise the probability that their recursively-improving AI would continue to behave in a friendly, instead of destructive, manner after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which could lead to a race to the bottom of safety preventative measures in order to release products before rivals), [159] and making use of AI in weapon systems. [160]

The thesis that AI can present existential danger also has critics. Skeptics normally state that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other problems associated with present AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals beyond the technology industry, existing chatbots and LLMs are currently perceived as though they were AGI, causing additional misunderstanding and worry. [162]

Skeptics sometimes charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an illogical belief in a supreme God. [163] Some researchers think that the communication projects on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to inflate interest in their items. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and scientists, provided a joint declaration asserting that "Mitigating the danger of termination from AI should be a global concern together with other societal-scale threats such as pandemics and nuclear war." [152]

Mass joblessness


Researchers from OpenAI estimated that "80% of the U.S. workforce could have at least 10% of their work tasks affected by the introduction of LLMs, while around 19% of workers may see a minimum of 50% of their tasks affected". [166] [167] They consider office workers to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI might have a much better autonomy, capability to make choices, to user interface with other computer system tools, however also to manage robotized bodies.


According to Stephen Hawking, the outcome of automation on the lifestyle will depend on how the wealth will be rearranged: [142]

Everyone can enjoy a life of elegant leisure if the machine-produced wealth is shared, or the majority of people can end up badly bad if the machine-owners successfully lobby against wealth redistribution. So far, the trend seems to be toward the second choice, with innovation driving ever-increasing inequality


Elon Musk thinks about that the automation of society will need governments to adopt a universal standard income. [168]

See likewise


Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain
AI effect
AI safety - Research area on making AI safe and advantageous
AI positioning - AI conformance to the intended objective
A.I. Rising - 2018 movie directed by Lazar Bodroža
Artificial intelligence
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General video game playing - Ability of expert system to play different games
Generative expert system - AI system efficient in generating material in action to triggers
Human Brain Project - Scientific research study job
Intelligence amplification - Use of infotech to enhance human intelligence (IA).
Machine ethics - Moral behaviours of man-made makers.
Moravec's paradox.
Multi-task knowing - Solving multiple maker learning tasks at the same time.
Neural scaling law - Statistical law in device knowing.
Outline of expert system - Overview of and topical guide to expert system.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or type of expert system.
Transfer knowing - Artificial intelligence technique.
Loebner Prize - Annual AI competitors.
Hardware for expert system - Hardware specifically designed and optimized for expert system.
Weak expert system - Form of expert system.


Notes


^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the post Chinese room.
^ AI creator John McCarthy writes: "we can not yet identify in basic what kinds of computational procedures we wish to call intelligent. " [26] (For a discussion of some meanings of intelligence utilized by synthetic intelligence researchers, see viewpoint of expert system.).
^ The Lighthill report particularly criticized AI's "grand objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA became determined to fund just "mission-oriented direct research, rather than fundamental undirected research study". [56] [57] ^ As AI founder John McCarthy writes "it would be a great relief to the remainder of the workers in AI if the creators of new general formalisms would express their hopes in a more safeguarded type than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As defined in a standard AI textbook: "The assertion that machines could perhaps act smartly (or, perhaps better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that devices that do so are in fact believing (instead of imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that artificial general intelligence advantages all of humanity.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is creating artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were identified as being active in 2020.
^ a b c "AI timelines: What do professionals in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton gives up Google and alerts of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad stars from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real hazard is not AI itself however the way we release it.
^ "Impressed by expert system? Experts say AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential threats to mankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that mankind needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of termination from AI should be an international top priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals warn of threat of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing makers that can outthink us in basic methods.
^ LeCun, Yann (June 2023). "AGI does not present an existential danger". Medium. There is no reason to fear AI as an existential risk.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "maker intelligence with the complete range of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is changing our world - it is on everyone to make certain that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart qualities is based on the topics covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reevaluated: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reassessed: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of challenging examinations both AI variations have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software engineers prevented the term expert system for fear of being considered as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of device intelligence: Despite development in device intelligence, synthetic basic intelligence is still a major obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not become a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why basic synthetic intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will artificial intelligence bring us paradise or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A survey of professional viewpoint. In Fundamental issues of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: U

Comentários