Artificial General Intelligence

Bình luận · 93 Lượt xem

Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive capabilities throughout a wide range of cognitive tasks.

Artificial basic intelligence (AGI) is a type of artificial intelligence (AI) that matches or surpasses human cognitive capabilities across a vast array of cognitive jobs. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly exceeds human cognitive capabilities. AGI is thought about one of the definitions of strong AI.


Creating AGI is a primary goal of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research and advancement jobs throughout 37 countries. [4]

The timeline for accomplishing AGI remains a topic of ongoing debate amongst scientists and specialists. As of 2023, some argue that it may be possible in years or decades; others preserve it might take a century or longer; a minority think it may never ever be accomplished; and another minority claims that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed concerns about the fast development towards AGI, suggesting it could be accomplished earlier than many anticipate. [7]

There is dispute on the precise meaning of AGI and relating to whether modern-day large language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a typical topic in science fiction and futures research studies. [9] [10]

Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many professionals on AI have actually specified that mitigating the danger of human extinction presented by AGI should be a global priority. [14] [15] Others discover the advancement of AGI to be too remote to present such a threat. [16] [17]

Terminology


AGI is also referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or general intelligent action. [21]

Some scholastic sources reserve the term "strong AI" for computer programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) is able to fix one specific issue however does not have basic cognitive abilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as human beings. [a]

Related ideas include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is much more generally smart than people, [23] while the notion of transformative AI connects to AI having a large effect on society, for instance, similar to the farming or industrial transformation. [24]

A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify 5 levels of AGI: emerging, qualified, professional, virtuoso, and superhuman. For example, a competent AGI is defined as an AI that outshines 50% of competent grownups in a large variety of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is similarly defined but with a threshold of 100%. They consider large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]

Characteristics


Various popular definitions of intelligence have actually been proposed. One of the leading proposals is the Turing test. However, there are other popular definitions, and some scientists disagree with the more popular techniques. [b]

Intelligence characteristics


Researchers generally hold that intelligence is needed to do all of the following: [27]

reason, use technique, resolve puzzles, and make judgments under unpredictability
represent knowledge, including sound judgment understanding
plan
discover
- communicate in natural language
- if required, integrate these abilities in conclusion of any provided goal


Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and decision making) think about additional qualities such as imagination (the ability to form unique psychological images and ideas) [28] and autonomy. [29]

Computer-based systems that show a number of these capabilities exist (e.g. see computational imagination, automated thinking, decision support group, robotic, evolutionary computation, intelligent representative). There is argument about whether contemporary AI systems have them to a sufficient degree.


Physical qualities


Other capabilities are considered preferable in intelligent systems, as they may affect intelligence or aid in its expression. These include: [30]

- the ability to sense (e.g. see, hear, and so on), and
- the capability to act (e.g. move and control objects, modification area to check out, etc).


This consists of the ability to identify and react to hazard. [31]

Although the capability to sense (e.g. see, hear, and so on) and the ability to act (e.g. relocation and control objects, modification location to explore, etc) can be preferable for some intelligent systems, [30] these physical capabilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language models (LLMs) might already be or become AGI. Even from a less positive perspective on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system is sufficient, supplied it can process input (language) from the external world in place of human senses. This analysis aligns with the understanding that AGI has actually never been proscribed a specific physical embodiment and therefore does not require a capacity for mobility or standard "eyes and ears". [32]

Tests for human-level AGI


Several tests implied to confirm human-level AGI have actually been considered, including: [33] [34]

The concept of the test is that the maker needs to attempt and pretend to be a man, by responding to questions put to it, and it will just pass if the pretence is fairly convincing. A considerable part of a jury, who should not be expert about makers, should be taken in by the pretence. [37]

AI-complete issues


An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would need to execute AGI, because the solution is beyond the capabilities of a purpose-specific algorithm. [47]

There are numerous issues that have been conjectured to need basic intelligence to resolve along with people. Examples include computer system vision, natural language understanding, and dealing with unexpected scenarios while solving any real-world issue. [48] Even a particular task like translation requires a device to check out and write in both languages, follow the author's argument (reason), understand the context (understanding), and consistently replicate the author's original intent (social intelligence). All of these issues require to be fixed concurrently in order to reach human-level device efficiency.


However, numerous of these jobs can now be performed by modern large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on lots of standards for checking out comprehension and visual thinking. [49]

History


Classical AI


Modern AI research study began in the mid-1950s. [50] The first generation of AI researchers were persuaded that artificial general intelligence was possible and that it would exist in simply a few decades. [51] AI pioneer Herbert A. Simon composed in 1965: "devices will be capable, within twenty years, of doing any work a man can do." [52]

Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might create by the year 2001. AI leader Marvin Minsky was a specialist [53] on the project of making HAL 9000 as practical as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the issue of creating 'expert system' will considerably be resolved". [54]

Several classical AI jobs, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar project, were directed at AGI.


However, in the early 1970s, it became apparent that scientists had grossly ignored the problem of the task. Funding agencies ended up being hesitant of AGI and put researchers under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "continue a casual discussion". [58] In action to this and the success of professional systems, both industry and government pumped money into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never satisfied. [60] For the 2nd time in 20 years, AI scientists who forecasted the imminent accomplishment of AGI had been mistaken. By the 1990s, AI scientists had a track record for making vain pledges. They ended up being hesitant to make predictions at all [d] and avoided reference of "human level" artificial intelligence for worry of being labeled "wild-eyed dreamer [s]. [62]

Narrow AI research


In the 1990s and early 21st century, mainstream AI achieved commercial success and academic respectability by concentrating on specific sub-problems where AI can produce proven outcomes and commercial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the innovation industry, and research study in this vein is heavily funded in both academia and industry. Since 2018 [update], advancement in this field was thought about an emerging pattern, and a fully grown phase was expected to be reached in more than 10 years. [64]

At the turn of the century, many traditional AI scientists [65] hoped that strong AI might be established by integrating programs that fix various sub-problems. Hans Moravec composed in 1988:


I am confident that this bottom-up path to artificial intelligence will one day meet the traditional top-down path majority way, all set to offer the real-world proficiency and the commonsense understanding that has actually been so frustratingly evasive in reasoning programs. Fully intelligent devices will result when the metaphorical golden spike is driven unifying the two efforts. [65]

However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:


The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow meet "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper are legitimate, then this expectation is hopelessly modular and there is truly only one feasible path from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer system will never ever be reached by this path (or vice versa) - nor is it clear why we must even attempt to reach such a level, since it looks as if getting there would simply amount to uprooting our signs from their intrinsic meanings (thereby merely reducing ourselves to the practical equivalent of a programmable computer). [66]

Modern synthetic general intelligence research


The term "artificial basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the capability to satisfy goals in a wide range of environments". [68] This type of AGI, defined by the ability to increase a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was also called universal artificial intelligence. [70]

The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The first summer school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and including a number of visitor lecturers.


Since 2023 [upgrade], a little number of computer system scientists are active in AGI research, and many contribute to a series of AGI conferences. However, progressively more researchers have an interest in open-ended knowing, [76] [77] which is the concept of allowing AI to constantly learn and innovate like human beings do.


Feasibility


As of 2023, the advancement and potential achievement of AGI remains a subject of intense argument within the AI neighborhood. While conventional agreement held that AGI was a far-off goal, current advancements have actually led some researchers and industry figures to declare that early kinds of AGI may already exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a man can do". This prediction failed to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century due to the fact that it would require "unforeseeable and essentially unpredictable breakthroughs" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern computing and human-level artificial intelligence is as wide as the gulf between existing space flight and useful faster-than-light spaceflight. [80]

A more obstacle is the absence of clarity in defining what intelligence involves. Does it require awareness? Must it display the capability to set goals as well as pursue them? Is it purely a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding needed? Does intelligence require clearly replicating the brain and its specific professors? Does it require feelings? [81]

Most AI scientists think strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, but that the present level of progress is such that a date can not properly be anticipated. [84] AI professionals' views on the feasibility of AGI wax and subside. Four polls performed in 2012 and 2013 recommended that the typical price quote among experts for when they would be 50% positive AGI would arrive was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% responded to with "never" when asked the exact same concern but with a 90% confidence instead. [85] [86] Further existing AGI development considerations can be discovered above Tests for validating human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong bias towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They examined 95 forecasts made in between 1950 and 2012 on when human-level AI will come about. [87]

In 2023, Microsoft scientists released a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it might reasonably be deemed an early (yet still insufficient) version of an artificial general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of human beings on the Torrance tests of creativity. [89] [90]

Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of general intelligence has actually currently been accomplished with frontier designs. They wrote that reluctance to this view originates from four main reasons: a "healthy suspicion about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "devotion to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]

2023 also marked the development of large multimodal designs (large language designs capable of processing or producing numerous methods such as text, audio, and images). [92]

In 2024, OpenAI released o1-preview, the very first of a series of models that "invest more time believing before they respond". According to Mira Murati, this capability to believe before reacting represents a brand-new, additional paradigm. It improves model outputs by investing more computing power when creating the answer, whereas the model scaling paradigm improves outputs by increasing the model size, training information and training calculate power. [93] [94]

An OpenAI worker, Vahid Kazemi, declared in 2024 that the business had attained AGI, stating, "In my opinion, we have actually currently achieved AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "better than a lot of people at the majority of jobs." He likewise resolved criticisms that big language models (LLMs) merely follow predefined patterns, comparing their knowing process to the clinical method of observing, hypothesizing, and validating. These statements have sparked argument, as they rely on a broad and non-traditional meaning of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models demonstrate amazing adaptability, they might not totally satisfy this requirement. Notably, Kazemi's remarks came quickly after OpenAI removed "AGI" from the regards to its partnership with Microsoft, prompting speculation about the company's strategic intentions. [95]

Timescales


Progress in synthetic intelligence has actually traditionally gone through periods of rapid progress separated by periods when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to produce area for further development. [82] [98] [99] For example, the computer system hardware offered in the twentieth century was not sufficient to implement deep knowing, which requires great deals of GPU-enabled CPUs. [100]

In the introduction to his 2006 book, [101] Goertzel says that quotes of the time needed before a genuinely flexible AGI is developed vary from 10 years to over a century. Since 2007 [upgrade], the consensus in the AGI research study neighborhood seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI researchers have actually offered a broad variety of opinions on whether development will be this rapid. A 2012 meta-analysis of 95 such viewpoints discovered a predisposition towards anticipating that the onset of AGI would occur within 16-26 years for modern-day and historic forecasts alike. That paper has been slammed for how it categorized viewpoints as professional or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the traditional method utilized a weighted sum of scores from different pre-defined classifiers). [105] AlexNet was related to as the preliminary ground-breaker of the current deep knowing wave. [105]

In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly offered and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old kid in first grade. A grownup comes to about 100 usually. Similar tests were performed in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language design capable of performing lots of diverse jobs without specific training. According to Gary Grossman in a VentureBeat article, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]

In the same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to abide by their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]

In 2022, DeepMind established Gato, a "general-purpose" system capable of carrying out more than 600 different jobs. [110]

In 2023, Microsoft Research released a study on an early variation of OpenAI's GPT-4, competing that it showed more basic intelligence than previous AI models and demonstrated human-level efficiency in jobs covering multiple domains, such as mathematics, coding, and law. This research study stimulated a dispute on whether GPT-4 could be thought about an early, insufficient version of synthetic basic intelligence, stressing the requirement for more expedition and evaluation of such systems. [111]

In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]

The concept that this stuff could in fact get smarter than individuals - a few people thought that, [...] But many people thought it was way off. And I believed it was method off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer think that.


In May 2023, Demis Hassabis similarly stated that "The progress in the last couple of years has actually been pretty incredible", which he sees no reason why it would slow down, expecting AGI within a years or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within 5 years, AI would can passing any test at least along with people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI worker, approximated AGI by 2027 to be "noticeably plausible". [115]

Whole brain emulation


While the development of transformer models like in ChatGPT is thought about the most promising course to AGI, [116] [117] entire brain emulation can act as an alternative technique. With whole brain simulation, a brain model is built by scanning and mapping a biological brain in detail, and then copying and replicating it on a computer system or another computational gadget. The simulation model should be sufficiently faithful to the initial, so that it acts in practically the very same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been gone over in expert system research study [103] as a method to strong AI. Neuroimaging technologies that might provide the required detailed understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will appear on a similar timescale to the computing power required to imitate it.


Early approximates


For low-level brain simulation, an extremely effective cluster of computers or GPUs would be needed, given the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a basic switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil took a look at various quotes for the hardware needed to equal the human brain and adopted a figure of 1016 calculations per 2nd (cps). [e] (For comparison, if a "computation" was equivalent to one "floating-point operation" - a measure utilized to rate present supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was attained in 2022.) He used this figure to predict the essential hardware would be readily available sometime in between 2015 and 2025, if the rapid development in computer power at the time of writing continued.


Current research


The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually developed an especially in-depth and openly available atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.


Criticisms of simulation-based techniques


The artificial nerve cell design assumed by Kurzweil and utilized in lots of present artificial neural network implementations is easy compared with biological nerve cells. A brain simulation would likely have to catch the in-depth cellular behaviour of biological neurons, presently comprehended just in broad overview. The overhead presented by full modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would require computational powers several orders of magnitude bigger than Kurzweil's price quote. In addition, the price quotes do not account for glial cells, which are known to play a function in cognitive processes. [125]

A fundamental criticism of the simulated brain method stems from embodied cognition theory which asserts that human personification is a vital aspect of human intelligence and is needed to ground significance. [126] [127] If this theory is right, any totally functional brain model will require to encompass more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, but it is unidentified whether this would be adequate.


Philosophical viewpoint


"Strong AI" as defined in approach


In 1980, theorist John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between 2 hypotheses about expert system: [f]

Strong AI hypothesis: An artificial intelligence system can have "a mind" and "awareness".
Weak AI hypothesis: An expert system system can (only) act like it thinks and has a mind and consciousness.


The very first one he called "strong" since it makes a more powerful declaration: it presumes something special has taken place to the device that exceeds those abilities that we can evaluate. The behaviour of a "weak AI" device would be precisely identical to a "strong AI" machine, but the latter would also have subjective mindful experience. This use is also common in academic AI research and textbooks. [129]

In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to imply "human level artificial general intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that consciousness is needed for human-level AGI. Academic philosophers such as Searle do not believe that is the case, and to most expert system researchers the concern is out-of-scope. [130]

Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to understand if it in fact has mind - undoubtedly, there would be no other way to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the statement "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are 2 different things.


Consciousness


Consciousness can have numerous significances, and some elements play considerable roles in sci-fi and the principles of artificial intelligence:


Sentience (or "sensational awareness"): The ability to "feel" perceptions or feelings subjectively, instead of the capability to factor about understandings. Some philosophers, such as David Chalmers, use the term "consciousness" to refer exclusively to remarkable awareness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience occurs is called the hard issue of consciousness. [133] Thomas Nagel explained in 1974 that it "seems like" something to be mindful. If we are not conscious, then it does not feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had achieved life, though this claim was extensively contested by other specialists. [135]

Self-awareness: To have conscious awareness of oneself as a separate individual, especially to be consciously mindful of one's own ideas. This is opposed to merely being the "topic of one's believed"-an operating system or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the exact same method it represents everything else)-but this is not what individuals typically suggest when they use the term "self-awareness". [g]

These traits have a moral measurement. AI sentience would give increase to concerns of welfare and legal protection, likewise to animals. [136] Other aspects of awareness associated to cognitive capabilities are likewise relevant to the principle of AI rights. [137] Determining how to incorporate innovative AI with existing legal and social frameworks is an emergent issue. [138]

Benefits


AGI might have a variety of applications. If oriented towards such goals, AGI might assist alleviate numerous issues worldwide such as appetite, poverty and health issue. [139]

AGI might enhance productivity and effectiveness in a lot of tasks. For example, in public health, AGI might speed up medical research study, especially against cancer. [140] It might look after the elderly, [141] and equalize access to quick, premium medical diagnostics. It could use enjoyable, low-cost and tailored education. [141] The requirement to work to subsist could become obsolete if the wealth produced is correctly rearranged. [141] [142] This also raises the question of the location of human beings in a significantly automated society.


AGI could likewise assist to make reasonable decisions, and to anticipate and prevent catastrophes. It could also help to profit of potentially devastating technologies such as nanotechnology or climate engineering, while avoiding the associated risks. [143] If an AGI's main goal is to prevent existential catastrophes such as human extinction (which could be difficult if the Vulnerable World Hypothesis ends up being true), [144] it might take procedures to considerably lower the threats [143] while lessening the impact of these steps on our quality of life.


Risks


Existential dangers


AGI might represent multiple types of existential danger, which are dangers that threaten "the early extinction of Earth-originating smart life or the long-term and drastic damage of its potential for desirable future development". [145] The risk of human termination from AGI has been the subject of numerous debates, but there is also the possibility that the development of AGI would result in a permanently problematic future. Notably, it could be used to spread out and preserve the set of worths of whoever develops it. If humankind still has moral blind areas comparable to slavery in the past, AGI may irreversibly entrench it, preventing ethical progress. [146] Furthermore, AGI might facilitate mass security and indoctrination, which could be utilized to produce a stable repressive around the world totalitarian program. [147] [148] There is also a risk for the devices themselves. If machines that are sentient or otherwise worthwhile of ethical consideration are mass produced in the future, engaging in a civilizational course that indefinitely overlooks their welfare and interests might be an existential catastrophe. [149] [150] Considering just how much AGI could improve mankind's future and aid lower other existential threats, Toby Ord calls these existential dangers "an argument for continuing with due care", not for "deserting AI". [147]

Risk of loss of control and human extinction


The thesis that AI poses an existential threat for people, which this risk requires more attention, is questionable but has actually been backed in 2023 by many public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking slammed widespread indifference:


So, facing possible futures of incalculable benefits and threats, the professionals are certainly doing everything possible to guarantee the very best outcome, right? Wrong. If a remarkable alien civilisation sent us a message stating, 'We'll arrive in a few decades,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]

The possible fate of humanity has actually in some cases been compared to the fate of gorillas threatened by human activities. The comparison mentions that greater intelligence enabled mankind to dominate gorillas, which are now susceptible in ways that they might not have prepared for. As an outcome, the gorilla has ended up being a threatened species, not out of malice, however just as a civilian casualties from human activities. [154]

The skeptic Yann LeCun considers that AGIs will have no desire to control humankind and that we ought to take care not to anthropomorphize them and interpret their intents as we would for people. He said that individuals won't be "wise enough to create super-intelligent devices, yet extremely dumb to the point of offering it moronic goals without any safeguards". [155] On the other side, the idea of crucial merging recommends that practically whatever their goals, smart representatives will have factors to attempt to make it through and obtain more power as intermediary actions to achieving these objectives. And that this does not need having emotions. [156]

Many scholars who are worried about existential threat supporter for more research study into resolving the "control problem" to address the question: what types of safeguards, algorithms, or architectures can programmers implement to maximise the probability that their recursively-improving AI would continue to act in a friendly, rather than damaging, way after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which might lead to a race to the bottom of safety preventative measures in order to launch items before competitors), [159] and using AI in weapon systems. [160]

The thesis that AI can posture existential threat also has detractors. Skeptics generally state that AGI is not likely in the short-term, or that issues about AGI distract from other concerns related to current AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of people beyond the innovation industry, existing chatbots and LLMs are already viewed as though they were AGI, leading to further misunderstanding and worry. [162]

Skeptics in some cases charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence replacing an illogical belief in an omnipotent God. [163] Some researchers believe that the interaction projects on AI existential threat by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulative capture and to inflate interest in their products. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and researchers, provided a joint statement asserting that "Mitigating the threat of extinction from AI need to be a worldwide top priority along with other societal-scale dangers such as pandemics and nuclear war." [152]

Mass joblessness


Researchers from OpenAI estimated that "80% of the U.S. workforce might have at least 10% of their work jobs impacted by the intro of LLMs, while around 19% of workers may see a minimum of 50% of their tasks impacted". [166] [167] They think about office employees to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI might have a better autonomy, capability to make decisions, to interface with other computer tools, however likewise to manage robotized bodies.


According to Stephen Hawking, the result of automation on the quality of life will depend upon how the wealth will be redistributed: [142]

Everyone can enjoy a life of elegant leisure if the machine-produced wealth is shared, or a lot of individuals can end up miserably bad if the machine-owners effectively lobby against wealth redistribution. So far, the trend seems to be towards the 2nd choice, with innovation driving ever-increasing inequality


Elon Musk considers that the automation of society will need governments to embrace a universal standard income. [168]

See also


Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI result
AI safety - Research location on making AI safe and advantageous
AI positioning - AI conformance to the designated objective
A.I. Rising - 2018 film directed by Lazar Bodroža
Artificial intelligence
Automated machine learning - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre
General video game playing - Ability of synthetic intelligence to play different games
Generative synthetic intelligence - AI system capable of producing material in reaction to prompts
Human Brain Project - Scientific research study job
Intelligence amplification - Use of details technology to enhance human intelligence (IA).
Machine principles - Moral behaviours of man-made devices.
Moravec's paradox.
Multi-task knowing - Solving several maker learning jobs at the same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of artificial intelligence - Overview of and topical guide to synthetic intelligence.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or kind of expert system.
Transfer learning - Artificial intelligence strategy.
Loebner Prize - Annual AI competition.
Hardware for synthetic intelligence - Hardware specially created and enhanced for artificial intelligence.
Weak expert system - Form of expert system.


Notes


^ a b See below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the short article Chinese room.
^ AI creator John McCarthy writes: "we can not yet define in general what sort of computational procedures we wish to call smart. " [26] (For a conversation of some meanings of intelligence used by synthetic intelligence scientists, see approach of synthetic intelligence.).
^ The Lighthill report particularly criticized AI's "grand goals" and led the taking apart of AI research in England. [55] In the U.S., DARPA became identified to money just "mission-oriented direct research, instead of standard undirected research". [56] [57] ^ As AI creator John McCarthy writes "it would be a fantastic relief to the remainder of the employees in AI if the innovators of new general formalisms would express their hopes in a more guarded form than has actually sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As specified in a basic AI textbook: "The assertion that makers might potentially act intelligently (or, perhaps much better, act as if they were intelligent) is called the 'weak AI' hypothesis by theorists, and the assertion that devices that do so are in fact believing (instead of replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that synthetic basic intelligence advantages all of humankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is creating artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were recognized as being active in 2020.
^ a b c "AI timelines: What do experts in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton gives up Google and cautions of threat ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad stars from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real hazard is not AI itself however the method we deploy it.
^ "Impressed by expert system? Experts state AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential risks to humanity.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that mankind needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of termination from AI must be an international concern.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists caution of threat of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing devices that can outthink us in general methods.
^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no reason to fear AI as an existential danger.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "maker intelligence with the complete range of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is transforming our world - it is on all of us to make sure that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart qualities is based on the topics covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reassessed: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reconsidered: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists challenge whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here's a list of challenging tests both AI variations have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended checking an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers prevented the term synthetic intelligence for fear of being seen as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite development in device intelligence, artificial basic intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not become a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A study of expert viewpoint. In Fundamental concerns of artificial intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.

Bình luận