Artificial General Intelligence

Comentários · 88 Visualizações

Artificial general intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or goes beyond human cognitive abilities across a broad range of cognitive jobs.

Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or exceeds human cognitive abilities throughout a wide variety of cognitive tasks. This contrasts with narrow AI, which is restricted to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly goes beyond human cognitive capabilities. AGI is considered one of the definitions of strong AI.


Creating AGI is a main objective of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research and advancement projects throughout 37 countries. [4]

The timeline for attaining AGI stays a topic of continuous dispute among researchers and yogicentral.science experts. Since 2023, some argue that it might be possible in years or decades; others preserve it may take a century or longer; a minority believe it may never ever be attained; and another minority declares that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed issues about the quick progress towards AGI, suggesting it might be accomplished earlier than many anticipate. [7]

There is dispute on the precise definition of AGI and concerning whether modern-day large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in sci-fi and futures research studies. [9] [10]

Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many experts on AI have actually stated that alleviating the risk of human termination posed by AGI ought to be an international top priority. [14] [15] Others find the development of AGI to be too remote to provide such a threat. [16] [17]

Terminology


AGI is also referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic intelligent action. [21]

Some academic sources schedule the term "strong AI" for computer programs that experience life or consciousness. [a] On the other hand, weak AI (or narrow AI) is able to resolve one particular problem however does not have general cognitive abilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as people. [a]

Related ideas include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is a lot more typically smart than humans, [23] while the concept of transformative AI associates with AI having a large effect on society, for example, comparable to the farming or industrial transformation. [24]

A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define 5 levels of AGI: emerging, skilled, professional, virtuoso, and superhuman. For instance, a competent AGI is defined as an AI that outshines 50% of proficient grownups in a broad range of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is likewise defined but with a threshold of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]

Characteristics


Various popular meanings of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other well-known definitions, and some researchers disagree with the more popular methods. [b]

Intelligence traits


Researchers normally hold that intelligence is required to do all of the following: [27]

reason, use method, resolve puzzles, and make judgments under uncertainty
represent understanding, consisting of sound judgment understanding
plan
learn
- interact in natural language
- if essential, integrate these skills in completion of any given goal


Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and decision making) consider extra characteristics such as creativity (the capability to form unique mental images and ideas) [28] and autonomy. [29]

Computer-based systems that display a number of these abilities exist (e.g. see computational creativity, automated thinking, decision assistance system, robotic, evolutionary computation, intelligent representative). There is debate about whether modern AI systems possess them to an appropriate degree.


Physical traits


Other capabilities are thought about preferable in smart systems, as they may affect intelligence or aid in its expression. These include: [30]

- the ability to sense (e.g. see, hear, and so on), and
- the capability to act (e.g. relocation and control items, change location to check out, etc).


This consists of the capability to find and react to hazard. [31]

Although the capability to sense (e.g. see, hear, etc) and the ability to act (e.g. move and control objects, change area to check out, etc) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that big language designs (LLMs) may currently be or become AGI. Even from a less optimistic point of view on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has actually never ever been proscribed a specific physical embodiment and therefore does not demand a capacity for locomotion or conventional "eyes and ears". [32]

Tests for human-level AGI


Several tests implied to verify human-level AGI have been considered, garagesale.es consisting of: [33] [34]

The concept of the test is that the machine has to try and pretend to be a guy, by addressing questions put to it, and it will only pass if the pretence is fairly convincing. A substantial portion of a jury, who need to not be expert about makers, must be taken in by the pretence. [37]

AI-complete issues


An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to solve it, one would need to implement AGI, since the option is beyond the capabilities of a purpose-specific algorithm. [47]

There are many problems that have been conjectured to require general intelligence to solve in addition to people. Examples consist of computer system vision, natural language understanding, and dealing with unexpected situations while fixing any real-world problem. [48] Even a specific job like translation requires a machine to read and compose in both languages, follow the author's argument (factor), comprehend the context (knowledge), and consistently recreate the author's initial intent (social intelligence). All of these problems require to be resolved all at once in order to reach human-level machine efficiency.


However, much of these jobs can now be performed by modern-day big language models. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on numerous standards for reading comprehension and visual thinking. [49]

History


Classical AI


Modern AI research study started in the mid-1950s. [50] The first generation of AI scientists were convinced that synthetic general intelligence was possible and that it would exist in simply a few decades. [51] AI leader Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a guy can do." [52]

Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they might create by the year 2001. AI leader Marvin Minsky was a consultant [53] on the project of making HAL 9000 as practical as possible according to the consensus forecasts of the time. He said in 1967, "Within a generation ... the problem of creating 'expert system' will significantly be solved". [54]

Several classical AI jobs, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar job, were directed at AGI.


However, in the early 1970s, it ended up being obvious that scientists had grossly ignored the problem of the job. Funding firms became skeptical of AGI and put researchers under increasing pressure to produce useful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "bring on a casual discussion". [58] In reaction to this and the success of expert systems, both industry and federal government pumped cash into the field. [56] [59] However, confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in 20 years, AI researchers who anticipated the impending accomplishment of AGI had actually been misinterpreted. By the 1990s, AI researchers had a track record for making vain promises. They became hesitant to make predictions at all [d] and avoided mention of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]

Narrow AI research study


In the 1990s and early 21st century, mainstream AI accomplished industrial success and scholastic respectability by focusing on specific sub-problems where AI can produce proven results and commercial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the technology industry, and research in this vein is greatly moneyed in both academic community and market. As of 2018 [upgrade], development in this field was thought about an emerging pattern, and a mature phase was expected to be reached in more than 10 years. [64]

At the turn of the century, many traditional AI researchers [65] hoped that strong AI might be developed by combining programs that resolve different sub-problems. Hans Moravec wrote in 1988:


I am positive that this bottom-up route to synthetic intelligence will one day satisfy the conventional top-down path majority way, all set to supply the real-world competence and the commonsense understanding that has been so frustratingly elusive in reasoning programs. Fully smart machines will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]

However, even at the time, this was challenged. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by specifying:


The expectation has actually often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is truly just one viable route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this route (or vice versa) - nor is it clear why we ought to even try to reach such a level, considering that it appears arriving would simply total up to uprooting our symbols from their intrinsic significances (consequently simply minimizing ourselves to the functional equivalent of a programmable computer). [66]

Modern artificial basic intelligence research


The term "artificial general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to satisfy objectives in a large range of environments". [68] This type of AGI, identified by the ability to increase a mathematical meaning of intelligence instead of show human-like behaviour, [69] was likewise called universal expert system. [70]

The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial results". The first summertime school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a number of guest speakers.


Since 2023 [update], a small number of computer scientists are active in AGI research study, and lots of contribute to a series of AGI conferences. However, increasingly more researchers have an interest in open-ended learning, [76] [77] which is the concept of permitting AI to continually learn and innovate like people do.


Feasibility


As of 2023, the advancement and potential achievement of AGI stays a subject of extreme argument within the AI neighborhood. While conventional agreement held that AGI was a distant objective, current developments have actually led some scientists and market figures to claim that early forms of AGI may currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a male can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century due to the fact that it would require "unforeseeable and fundamentally unpredictable breakthroughs" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between modern computing and human-level synthetic intelligence is as broad as the gulf between present area flight and practical faster-than-light spaceflight. [80]

An additional obstacle is the absence of clearness in defining what intelligence involves. Does it need consciousness? Must it display the capability to set objectives along with pursue them? Is it purely a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are centers such as preparation, reasoning, and causal understanding needed? Does intelligence require explicitly replicating the brain and its particular faculties? Does it require feelings? [81]

Most AI researchers believe strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, however that the present level of development is such that a date can not accurately be forecasted. [84] AI experts' views on the feasibility of AGI wax and wane. Four surveys conducted in 2012 and 2013 recommended that the median price quote amongst professionals for when they would be 50% positive AGI would get here was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% answered with "never" when asked the exact same question however with a 90% self-confidence instead. [85] [86] Further present AGI progress factors to consider can be found above Tests for verifying human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong predisposition towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They examined 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]

In 2023, Microsoft scientists published a detailed examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, wiki.lafabriquedelalogistique.fr we think that it could fairly be considered as an early (yet still incomplete) version of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of people on the Torrance tests of creative thinking. [89] [90]

Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a considerable level of general intelligence has already been achieved with frontier designs. They composed that hesitation to this view comes from 4 main reasons: a "healthy suspicion about metrics for AGI", an "ideological commitment to alternative AI theories or methods", a "commitment to human (or biological) exceptionalism", or a "issue about the economic ramifications of AGI". [91]

2023 also marked the development of large multimodal designs (large language designs efficient in processing or creating several modalities such as text, audio, and images). [92]

In 2024, OpenAI released o1-preview, the very first of a series of models that "spend more time thinking before they respond". According to Mira Murati, this capability to think before responding represents a new, additional paradigm. It improves design outputs by spending more computing power when generating the response, whereas the model scaling paradigm improves outputs by increasing the model size, training information and training calculate power. [93] [94]

An OpenAI staff member, Vahid Kazemi, declared in 2024 that the business had achieved AGI, stating, "In my viewpoint, we have already achieved AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than the majority of humans at most tasks." He likewise dealt with criticisms that large language models (LLMs) simply follow predefined patterns, comparing their learning process to the clinical method of observing, hypothesizing, and verifying. These statements have stimulated argument, as they count on a broad and non-traditional definition of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show impressive versatility, they might not totally meet this requirement. Notably, Kazemi's remarks came quickly after OpenAI removed "AGI" from the regards to its collaboration with Microsoft, prompting speculation about the company's strategic objectives. [95]

Timescales


Progress in synthetic intelligence has historically gone through periods of quick progress separated by durations when development appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to create area for additional development. [82] [98] [99] For example, the computer hardware available in the twentieth century was not adequate to implement deep learning, which needs large numbers of GPU-enabled CPUs. [100]

In the intro to his 2006 book, [101] Goertzel says that price quotes of the time required before a truly flexible AGI is constructed vary from 10 years to over a century. As of 2007 [upgrade], the consensus in the AGI research study community appeared to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually given a large range of opinions on whether development will be this rapid. A 2012 meta-analysis of 95 such opinions discovered a predisposition towards anticipating that the start of AGI would occur within 16-26 years for modern-day and historical forecasts alike. That paper has been criticized for how it categorized viewpoints as professional or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the standard method used a weighted sum of ratings from different pre-defined classifiers). [105] AlexNet was related to as the preliminary ground-breaker of the present deep knowing wave. [105]

In 2017, scientists Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on openly readily available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds approximately to a six-year-old child in first grade. An adult pertains to about 100 on average. Similar tests were performed in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language model efficient in carrying out numerous diverse jobs without specific training. According to Gary Grossman in a VentureBeat article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]

In the exact same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to adhere to their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind developed Gato, a "general-purpose" system efficient in performing more than 600 different jobs. [110]

In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, contending that it showed more general intelligence than previous AI designs and demonstrated human-level efficiency in jobs covering multiple domains, such as mathematics, coding, and law. This research study triggered an argument on whether GPT-4 could be thought about an early, incomplete variation of synthetic general intelligence, emphasizing the need for additional expedition and examination of such systems. [111]

In 2023, the AI researcher Geoffrey Hinton specified that: [112]

The concept that this stuff could really get smarter than individuals - a couple of individuals believed that, [...] But many people thought it was way off. And I believed it was way off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer think that.


In May 2023, Demis Hassabis likewise said that "The development in the last few years has actually been quite extraordinary", which he sees no reason it would decrease, anticipating AGI within a years and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would be capable of passing any test a minimum of in addition to humans. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI staff member, approximated AGI by 2027 to be "noticeably possible". [115]

Whole brain emulation


While the development of transformer designs like in ChatGPT is thought about the most appealing course to AGI, [116] [117] whole brain emulation can work as an alternative technique. With entire brain simulation, a brain model is constructed by scanning and mapping a biological brain in information, and after that copying and replicating it on a computer system or another computational gadget. The simulation design need to be sufficiently loyal to the original, so that it behaves in almost the same way as the initial brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research functions. It has been talked about in artificial intelligence research [103] as an approach to strong AI. Neuroimaging innovations that could deliver the needed comprehensive understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will end up being available on a comparable timescale to the computing power required to replicate it.


Early estimates


For low-level brain simulation, a really effective cluster of computers or GPUs would be needed, offered the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by their adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on an easy switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil looked at numerous quotes for the hardware needed to equal the human brain and adopted a figure of 1016 calculations per second (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a measure used to rate current supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was accomplished in 2022.) He utilized this figure to forecast the necessary hardware would be offered at some point between 2015 and 2025, if the rapid development in computer system power at the time of composing continued.


Current research


The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually developed an especially detailed and publicly accessible atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.


Criticisms of simulation-based methods


The artificial neuron design presumed by Kurzweil and utilized in numerous current synthetic neural network executions is easy compared to biological nerve cells. A brain simulation would likely need to record the comprehensive cellular behaviour of biological nerve cells, currently understood just in broad summary. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would need computational powers a number of orders of magnitude larger than Kurzweil's price quote. In addition, the estimates do not represent glial cells, which are known to play a function in cognitive processes. [125]

A fundamental criticism of the simulated brain technique derives from embodied cognition theory which asserts that human embodiment is an important element of human intelligence and is necessary to ground significance. [126] [127] If this theory is appropriate, any totally practical brain design will require to include more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, however it is unknown whether this would suffice.


Philosophical point of view


"Strong AI" as defined in viewpoint


In 1980, theorist John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between two hypotheses about synthetic intelligence: [f]

Strong AI hypothesis: An artificial intelligence system can have "a mind" and "consciousness".
Weak AI hypothesis: An artificial intelligence system can (just) imitate it thinks and has a mind and awareness.


The very first one he called "strong" due to the fact that it makes a more powerful declaration: it presumes something unique has actually happened to the device that surpasses those capabilities that we can evaluate. The behaviour of a "weak AI" machine would be precisely similar to a "strong AI" device, however the latter would also have subjective mindful experience. This use is likewise typical in academic AI research study and books. [129]

In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to mean "human level synthetic general intelligence". [102] This is not the exact same as Searle's strong AI, unless it is presumed that awareness is required for human-level AGI. Academic philosophers such as Searle do not think that holds true, and to most expert system researchers the concern is out-of-scope. [130]

Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it in fact has mind - certainly, there would be no other way to inform. For AI research study, Searle's "weak AI hypothesis" is equivalent to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are two various things.


Consciousness


Consciousness can have various meanings, and some aspects play significant functions in sci-fi and the principles of expert system:


Sentience (or "remarkable consciousness"): The capability to "feel" perceptions or emotions subjectively, rather than the capability to reason about understandings. Some theorists, such as David Chalmers, use the term "consciousness" to refer specifically to sensational awareness, which is roughly comparable to life. [132] Determining why and how subjective experience arises is called the tough issue of consciousness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be conscious. If we are not mindful, then it doesn't feel like anything. Nagel uses the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had actually accomplished sentience, though this claim was extensively contested by other professionals. [135]

Self-awareness: To have mindful awareness of oneself as a different person, particularly to be knowingly knowledgeable about one's own thoughts. This is opposed to merely being the "topic of one's thought"-an os or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the very same way it represents everything else)-but this is not what individuals usually suggest when they use the term "self-awareness". [g]

These characteristics have an ethical measurement. AI life would generate issues of well-being and legal security, likewise to animals. [136] Other aspects of awareness associated to cognitive capabilities are likewise pertinent to the principle of AI rights. [137] Figuring out how to incorporate advanced AI with existing legal and social structures is an emerging problem. [138]

Benefits


AGI might have a wide array of applications. If oriented towards such objectives, AGI might assist reduce numerous problems on the planet such as hunger, poverty and illness. [139]

AGI could enhance efficiency and performance in the majority of tasks. For instance, in public health, AGI might speed up medical research, especially versus cancer. [140] It might look after the senior, [141] and equalize access to rapid, premium medical diagnostics. It might provide fun, inexpensive and personalized education. [141] The need to work to subsist might end up being outdated if the wealth produced is appropriately rearranged. [141] [142] This likewise raises the question of the location of humans in a significantly automated society.


AGI could likewise help to make logical choices, and to prepare for and prevent disasters. It could likewise help to gain the benefits of possibly catastrophic innovations such as nanotechnology or climate engineering, while preventing the associated dangers. [143] If an AGI's primary objective is to avoid existential disasters such as human extinction (which could be hard if the Vulnerable World Hypothesis ends up being real), [144] it could take steps to dramatically reduce the threats [143] while decreasing the impact of these procedures on our lifestyle.


Risks


Existential threats


AGI may represent several types of existential threat, which are risks that threaten "the early extinction of Earth-originating smart life or the irreversible and drastic destruction of its capacity for desirable future development". [145] The risk of human extinction from AGI has been the subject of numerous debates, but there is likewise the possibility that the advancement of AGI would cause a permanently problematic future. Notably, it might be utilized to spread and maintain the set of values of whoever establishes it. If mankind still has ethical blind areas similar to slavery in the past, AGI may irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI could help with mass surveillance and brainwashing, which might be utilized to develop a steady repressive worldwide totalitarian program. [147] [148] There is also a threat for the machines themselves. If devices that are sentient or otherwise deserving of moral consideration are mass created in the future, engaging in a civilizational course that indefinitely ignores their well-being and interests could be an existential disaster. [149] [150] Considering just how much AGI might improve humankind's future and assistance reduce other existential threats, Toby Ord calls these existential dangers "an argument for continuing with due care", not for "deserting AI". [147]

Risk of loss of control and human extinction


The thesis that AI presents an existential threat for humans, which this threat requires more attention, is controversial however has actually been backed in 2023 by many public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking slammed extensive indifference:


So, facing possible futures of incalculable advantages and dangers, the specialists are certainly doing whatever possible to guarantee the very best result, right? Wrong. If a superior alien civilisation sent us a message saying, 'We'll show up in a few decades,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]

The prospective fate of mankind has in some cases been compared to the fate of gorillas threatened by human activities. The comparison mentions that greater intelligence permitted humankind to dominate gorillas, which are now susceptible in methods that they might not have actually expected. As an outcome, the gorilla has actually ended up being a threatened species, not out of malice, however merely as a collateral damage from human activities. [154]

The skeptic Yann LeCun considers that AGIs will have no desire to dominate humankind and that we ought to be mindful not to anthropomorphize them and interpret their intents as we would for humans. He said that people won't be "wise sufficient to create super-intelligent makers, yet extremely silly to the point of providing it moronic objectives without any safeguards". [155] On the other side, the concept of critical convergence suggests that nearly whatever their objectives, intelligent agents will have factors to attempt to survive and acquire more power as intermediary steps to achieving these goals. Which this does not need having emotions. [156]

Many scholars who are concerned about existential danger advocate for more research into fixing the "control issue" to respond to the concern: what types of safeguards, algorithms, or architectures can developers carry out to increase the likelihood that their recursively-improving AI would continue to act in a friendly, rather than devastating, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which might result in a race to the bottom of safety precautions in order to release products before competitors), [159] and the usage of AI in weapon systems. [160]

The thesis that AI can posture existential threat also has detractors. Skeptics generally state that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other problems connected to present AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for numerous individuals beyond the technology industry, existing chatbots and LLMs are currently perceived as though they were AGI, leading to further misunderstanding and worry. [162]

Skeptics sometimes charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an illogical belief in a supreme God. [163] Some researchers believe that the interaction campaigns on AI existential danger by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulative capture and to inflate interest in their products. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and scientists, released a joint statement asserting that "Mitigating the danger of extinction from AI must be a global concern together with other societal-scale risks such as pandemics and nuclear war." [152]

Mass unemployment


Researchers from OpenAI estimated that "80% of the U.S. labor force might have at least 10% of their work tasks impacted by the intro of LLMs, while around 19% of employees may see a minimum of 50% of their tasks affected". [166] [167] They think about office workers to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, ability to make choices, to interface with other computer tools, however likewise to manage robotized bodies.


According to Stephen Hawking, the result of automation on the quality of life will depend upon how the wealth will be redistributed: [142]

Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or many people can end up badly poor if the machine-owners effectively lobby against wealth redistribution. Up until now, the trend seems to be toward the 2nd choice, with technology driving ever-increasing inequality


Elon Musk thinks about that the automation of society will require governments to adopt a universal fundamental income. [168]

See also


Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain
AI result
AI safety - Research area on making AI safe and advantageous
AI alignment - AI conformance to the intended objective
A.I. Rising - 2018 film directed by Lazar Bodroža
Expert system
Automated artificial intelligence - Process of automating the application of maker learning
BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General video game playing - Ability of expert system to play various video games
Generative expert system - AI system capable of creating content in reaction to prompts
Human Brain Project - Scientific research study job
Intelligence amplification - Use of infotech to enhance human intelligence (IA).
Machine principles - Moral behaviours of manufactured machines.
Moravec's paradox.
Multi-task knowing - Solving numerous device learning tasks at the very same time.
Neural scaling law - Statistical law in maker learning.
Outline of synthetic intelligence - Overview of and topical guide to expert system.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or kind of artificial intelligence.
Transfer knowing - Machine knowing method.
Loebner Prize - Annual AI competitors.
Hardware for expert system - Hardware specially developed and optimized for synthetic intelligence.
Weak expert system - Form of artificial intelligence.


Notes


^ a b See below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the short article Chinese space.
^ AI founder John McCarthy composes: "we can not yet identify in basic what sort of computational treatments we desire to call smart. " [26] (For a discussion of some meanings of intelligence utilized by expert system scientists, see viewpoint of artificial intelligence.).
^ The Lighthill report particularly slammed AI's "grandiose goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA became identified to money just "mission-oriented direct research, instead of standard undirected research study". [56] [57] ^ As AI founder John McCarthy composes "it would be a terrific relief to the remainder of the workers in AI if the developers of new basic formalisms would reveal their hopes in a more protected form than has actually in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As specified in a standard AI textbook: "The assertion that makers might possibly act intelligently (or, perhaps better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that makers that do so are actually believing (as opposed to mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that artificial general intelligence benefits all of humanity.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is producing synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020.
^ a b c "AI timelines: What do specialists in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton gives up Google and warns of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad actors from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The real threat is not AI itself however the way we release it.
^ "Impressed by expert system? Experts state AGI is coming next, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential dangers to mankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last creation that mankind requires to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of extinction from AI ought to be a worldwide priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists warn of threat of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing makers that can outthink us in general ways.
^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no factor to fear AI as an existential hazard.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the full series of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is transforming our world - it is on everyone to make sure that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart traits is based upon the subjects covered by major AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reassessed: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of hard tests both AI variations have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested checking an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software engineers avoided the term artificial intelligence for fear of being seen as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite development in maker intelligence, synthetic general intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not become a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland

Comentários